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BasicsBasics

• Hadron Colliders – especially those that allow access to a new energy 

regime – are machines for discovery

– In the case of the TeV scale, this is reinforced by the fact that the 

known SM forces and particles violate unitarity at around 1 TeV: 

there must be something new (if only a SM Higgs)

• Discovery means producing convincing evidence of something new

• In most of our models this means the production of new particles

– (though this need not be the only way) 

• Goals of analysis in this case: produce this evidence

– Separation of a signal from the backgrounds   

– Show that the probability of this signal arising from known sources is 

small   

• Demonstrate that the backgrounds are understood

• Statistics and systematics
Much more from Louis Lyons tomorrow

Today
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Access to the data: typical setupAccess to the data: typical setup

Raw data

↓↓↓↓ Centrally managed reconstruction – batch-like, only once if possible

Reconstructed data

↓↓↓↓ skimming – copying subsets of data

Skim dataset

↓↓↓↓ compress, possibly after re-reconstruction

Analysis dataset(s)

This is what you work on

Should be

– small enough for rapid turnaround

– large enough to enable background estimation

– have clear parentage (so luminosity, trigger efficiency well defined)

– use standard definitions of objects unless a very good reason not to
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SimulationSimulation

• In order to convince the world that you have produced something new, or 

to set limits on a proposed model, you need to understand

– What the standard model processes we already know about would 

look like in your detector

– How your detector would respond to the proposed model 

(and thus that non-observance of a signal is significant)
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Simulating Simulating hadronhadron--hadronhadron collisionscollisions

• Complicated by

– parton distributions — a hadron collider 

is really a broad-band quark and gluon 

collider

– both the initial and final states can be 

colored and can radiate gluons

– underlying event from proton remnants

fragmentation

parton
distribution

parton
distribution

Jet

Underlying
event

Photon, W, Z etc.

Hard scattering

ISR FSR
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Simulation toolsSimulation tools

• A “Monte Carlo” is a Fortran or C++ program that 

generates events

• Events vary from one to the next (random 

numbers) — expect to reproduce both the average 

behavior and fluctuations of real data

• Event Generators may be

– parton level:

• Parton Distribution functions

• Hard interaction matrix element

– and may also handle:

• Initial state radiation

• Final state radiation

• Underlying event

• Hadronization and decays

• Separate programs for Detector Simulation

– GEANT is by far the most commonly used
q
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Things to remember Things to remember –– 1 1 

• Event generators

– May or may not generate additional jets through parton showering

– May or may not treat spins properly (should you care?)

– May or may not get the cross section right

• NLO much better than LO – but sometimes no choice

• Be careful over things like

– You can’t necessarily just add (for example) a W+1 jet simulation and 

W+2 jets and W+3 jets to model a W + n jet signal.  Likely to be double 

counting.

– You can’t necessarily just run a W+1 jet simulation and generate the 

extra jets through parton showering either…
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Things to remember Things to remember –– 2 2 

• Detector simulation

– Your detector simulation is only as good as the geometrical modeling
of the detector

• Are all the cables and support structures in place?

• Example of DØ silicon detector

– While EM showers can be modeled very well (limited by the above)
hadronic shower simulation is acknowledged to be an imperfect art

– Short time structure in current detectors adds another dimension

• Nuclear de-excitations, drift of charge in argon can be slower than 
bunch crossing time

• In general

– You can probably get the average behavior right

– Don’t blindly trust tails of distributions or rare processes

• random numbers may not populate them fully

• modelling not verified at this level

– e.g. I would be wary of an MC estimate of the probability for a jet 
to be reconstructed as a photon – a 10-3 or 10-4 probability 
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Example: bExample: b--taggingtagging

• To correctly simulate the b-tagging efficiency of 

the detector requires proper modelling of

– Alignment of the silicon tracking detector

– Processes of charge deposition

– The nature and amount of material in the 

tracking volume

• Can use e+e- conversions

– Pattern recognition 

– Track-finding efficiencies

• Better to determine efficiencies from data

– calibration data must be collected at 
appropriate ET and η

In the end: “Monte Carlo scale factors”
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Simulation: bottom lineSimulation: bottom line

• Don’t think of your simulations so much as predictive tools but as 

multidimensional parameterisations of your knowledge of the detector and 

SM processes

• Like any parameterisation, you have no real right to use it without having 

verified that it works in the region of phase space that you care about 

Trust but verify
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Case Study 1 Case Study 1 

Top at the Top at the TevatronTevatron



John Womersley

How can we extract a signal for top?How can we extract a signal for top?

• Properties of top are predicted by theory, in this case the SM, except for 

its mass (just like the Higgs ☺☺☺☺)

– but even before discovery we had a good idea of the top mass, from 

limits set by earlier negative searches and from EW fits 

(just like the Higgs ☺☺☺☺)

• Production cross section 

– Colored particle – expect relatively high cross section 

– Pair production turns out to be the dominant mode qq →→→→ tt

– QCD, color octet, spin ½: →→→→ 5 – 10 pb inpp

• Decay mode

– In SM, weak decay 

– CKM matrix elements constrained by unitarity

– ~100% to t →→→→ Wb →→→→ known decay modes of W

• Massive object →→→→ high pT decay products
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tttt final statesfinal states

• Standard Model: t →→→→ Wb dominates

21%

15%

15%

1%3%
1%

44%

tau+X

mu+jets

e+jets

e+e

e+mu

mu+mu

all  hadronic

bbbbb

qqqql-ννννl-ννννW-

t

bbbbb

qql+ννννqql+ννννW+

t

30% e/µµµµ + jets
5% ee/eµµµµ/µµµµµµµµ
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Lepton signaturesLepton signatures

Cross sections for high pT jets

Cross sections for high pT
leptons

102 - 103 times more high pT
jets than high pT leptons

Jets > 30 GeV
> 50 GeV 1.4 x 105

1.4 x 106
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Final state signaturesFinal state signatures

The best bet seems to focus on the following two modes:

• “Lepton + jets”

– One W decays leptonically

– High pT lepton, two b-jets and two light quark jets + missing ET

• Good balance between signal and background

• “Dilepton”

– Both W’s decay leptonically

– Two high pT leptons, two b-jets + missing ET

• Only 1/6 of the signal rate but much lower backgrounds
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How to catch a Top quark

t
t
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b
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Neutrino
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SoSo……

• This kind of signature requires an excellent understanding of the whole 

detector

– Triggering, tracking, b-tags, electrons, muons, jets, missing ET

– Performance must be understood and modelled

• and of the likely backgrounds
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Lepton + jetsLepton + jets

• Require isolated lepton + MET + jets

– Dominant backgrounds will then be W+jets processes

• There are 4 quarks in thett partonic final state. Require 4 jets?

• # partons ≠≠≠≠ # jets!

– Get more jets from

• gluon radiation from initial or final state

– Get fewer jets from 

• Overlaps (merged by reconstruction) 

• Inefficiencies or cracks in the detector

• Jets falling outside acceptance in ηηηη

• Jets falling below pT cut
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How to catch a Top quark

t
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Another jet -

presumably 

gluon radiation
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How many bHow many b--tags?tags?

• Since typical b tagging efficiency ~ 0.5, 

then for a final state with two b jets

– Prob(2 tags) ~ 0.25

– Prob(≥≥≥≥ 1 tag) ~ 0.75

• Best number to ask for depends on 

signal:background and nature of 

background 

– is it dominated by real b’s or not? 

– If the signal has two real b jets, and 

so does the main background, then 

there is little to gain from asking for a 

second b-tag

• In the top sample, requiring ≥≥≥≥ 1 tag is 
good

• But want to look at ≥≥≥≥ 0 and ≥≥≥≥ 2 tags as 
well, to check that all behaves as we 

expect given the signal and background 

composition we estimate

JLIP p14

Efficiency ~ 55%

for mistag rate ~ 1% 
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Lepton + jets signals Lepton + jets signals 

Njets = 1, 2

Control region (little signal)

Verify background modelling:

tagging efficiencies from data

b:c:light q ratio from MC

Njets = 3, 4

Signal region 

Analysis with 2 tags

Combine results (including 

correlations) to get best 

estimate of cross section
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DileptonsDileptons

• Note non-negligible contribution from fake (misreconstructed) leptons

– Recall that # jets/# leptons ~ 103

– So unless Prob(jet →→→→ reconstucted lepton) << 10-3 , cannot be ignored

• Fake muons from calorimeter punchthrough

• Fake electrons from jet →→→→ leading ππππ0 + track overlap 

Signal selection
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Feeling lucky, punk?Feeling lucky, punk?

Then we’ll look for top →→→→ all jets
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Top Top →→→→→→→→ jetsjets

• Six jets final state with two b-jets

• Decay of massive objects: tend to be central, spherical, acoplanar events  

• Only leading order QCD calculation for pp →→→→ 6 jets: use data for bkg

• Impressive to see a signal but not (yet) in itself a discovery mode 

“medium”

selection on 

topological 

variables

“tight”

selection on 

topological 

variables
tighten cuts
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Case Study 2Case Study 2

Single Top at the Single Top at the TevatronTevatron
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Single Top productionSingle Top production

• Probes the electroweak properties of top and measures CKM matrix
element |Vtb|

• Good place to look for new physics connected with top

• Desirable to separate s and t-channel production modes:

• The s-channel mode is sensitive to charged resonances.

• The t-channel mode is more sensitive to FCNCs and new interactions.

– Expected cross section is about 1 pb (s-channel) and 2 pb (t-channel)
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BackgroundsBackgrounds

• Final state is Wbb →→→→ lepton + MET + two b-jets

• Signal to background much worse than fortt

– Basic reason: 

tt is a “W+4 jet” signal

single top is a “W+2 jet” signal

Factor ~ 25 

higher cross 

section
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19981998……

• hep-ph/9807340

• Signal: background ~ 1

• “5σσσσ signal in 500 pb-1”
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20052005……

• Real life 

signal:background ~ 0.1 
in this example

• What happened?

– Reality is not a parton level simulation – lose signal

– Real b-tagging (lower efficiency at lower pT)

– Real jet resolutions (jets not partons) and missing ET resolution

• Life’s a bitch.  And it’s almost always worse than your TDR.
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Never fear – help is at hand
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Neural NetworksNeural Networks

• “Artificial” (i.e. software) Neural Network

• Algorithm is stored as weights in the links

• Network is trained with samples of “signal” and “background(s)”

– Samples repeatedly presented to the network

– Outcome compared with desired

– Link strengths adjusted 

(optional)

In
pu
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Output variable
0 to 1

(discriminant)
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• What you get out (example)

• Advantages

– Develops non-linear selection criteria on combinations of variables

– A way to discriminate between S & B when you have many, correlated 

variables none of which individually show a clear separation

• Disadvantages

– Often seen as something of a black box

– Only as good as your “training” samples

• reliance on simulations?

For single top, gave a factor 

of 2 better sensitivity than 

the cut-based analysis

Signal-like

Background-like
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Other multivariate techniquesOther multivariate techniques

• Likelihood Discriminants

– Less of a “black box”

– For single top, analysis using 4 likelihood discriminants has 

comparable sensitivity to NN analysis

)()(

)(
)(

xPxP

xP
xL

backgroundsignal

signal

+
=

Signal-like
Background-like
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• Decision trees

– Rather new in high energy physics – miniBooNE is using 

– Some attractive features (again, “not a black box”)

– “boosted” and “bagged” decision trees

• Many more: Support vector machines, Bayesian NN, genetic algorithms,…

– http://www.pa.msu.edu/people/linnemann/stat_resources.html

Split data recursively until a 

stopping criterion is reached

(e.g. purity, too few events)

All events end up in either a
“signal” or a “background” leaf
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• Not yet able to see SM rate, but starting to disfavor some models

• A few inverse femtobarns for discovery

����

����

����

����

����

Back to single top Back to single top 

NN analysis
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Case Study 3Case Study 3

Top at UA1Top at UA1
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Nature, July 1984



John Womersley

Top at UA1Top at UA1

• Associated Production of an isolated, large transverse momentum lepton 

(electron or muon) and two jets at the CERNpp Collider
G. Arnison et al., Phys. Lett. 147B, 493 (1984)

• Looking for

pp →→→→ W
|→→→→ b t

|→→→→ blνννν

• Signature is isolated lepton

plus MET and two jets 

– Mass (jlνννν) should peak at mt

– Mass (jjlνννν) should peak at mW

ˡ→
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What they foundWhat they found

6 events observed

0.5 expected

JW (a young, naïve student):

“This looks pretty convincing!”

My advisor (older and wiser):

“Not necessarily…”
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Hard to get m(lνj1j2) below 
m(lνj2) + 8 GeV
(since pT

j1 > 8 GeV)

Hard to get m(lνj2) below 24 GeV
(since pT

l > 12 GeV )

In fact 30–50 GeV is typical for 
events just passing the pT cuts
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The moralThe moral

• If the kinematic cuts tend to make events lie in the region where you 

expect the signal, you are really doing a “counting experiment” which 

depends on absolute knowledge of backgrounds

• UA1 claim was later retracted after analysis of more data and better 

understanding of the backgrounds (J/ψψψψ, Y, bb and cc)

– In fairness, the knowledge of heavy flavor cross sections and the 

calculational toolkit available at that time were much less complete 

– Final limits from UA2 (UA1): mt > 69 (60) GeV

x =

efficiency background peak
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After DiscoveryAfter Discovery……

(thanks to Mark Oreglia)
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• Once a new state has been discovered…

• Want to

– Verify production mechanism (cross section, kinematic distributions)

– Verify decay modes

– Measure mass

– Measure quantum numbers (spin, charge…)
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• All channels consistent with each other and with QCD

• Ongoing effort to combine measurements within and among experiments.

Top Cross section measurementsTop Cross section measurements
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New particles decaying to top?New particles decaying to top?

• One signal might be structure in thett invariant mass distribution from 

(e.g.) X →→→→tt

• Consistent with QCD

Feb 2006 Update
682 pb-1
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Mass measurementsMass measurements

• Straightforward for a clean final state with all particles reconstructed:

• Harder if there is missing energy involved, multi-step decay chain(s), jets 

(jet energy calibration becomes an issue) and combinatorics (which jet 

comes from which particle)

– Often the case at LHC, especially for supersymmetry

– Again, top is an example

Mass(Bc) = 6275.2 +/- 4.3 +/- 2.3 MeV/c2
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Extracting the top massExtracting the top mass

Two basic techniques

• “Template method”: 

– extract a quantity from each event, e.g. a reconstructed top mass

– find the best fit for the distribution of this quantity to “templates”

• “Matrix element” (or “dynamic likelihood”) method

– Calculate a likelihood distribution from each event as a function of 

hypothesised top mass, including SM kinematics, and multiply these 

distributions to get the overall likelihood

– The “ideogram method” is a simplified version of this technique
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Jet energy scaleJet energy scale

• The jet energy scale is the dominant uncertainty in many measurements of 
the top quark.

• CDF and DØ use different approaches to determine the jet energy scale 
and uncertainty:

– CDF: 
Scale mainly from single particle response (testbeam) + jet 
fragmentation model 
Cross-checked with photon/Z-jet pT balance

• ~3% uncertainty, further improvements in progress. 

– DØ: 
Scale mainly from photon-jet pT balance. 
Cross-checked with closure tests in photon/Z+jet events

• Run II calibration uncertainty ~ 2%
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Top massTop mass

• Both experiments are now simultaneously calibrating the jet energy scale 

in situ using the W →→→→ jj decay within top events

Combined fit to 

top mass 

and 

shift in overall jet scale 

from nominal value

But …

no information on ET or ηηηη
dependence, or on b-jet scale

(these become systematic errors)

CDF lepton + jets
template method 
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Top mass status Summer 2006Top mass status Summer 2006


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Most precise measurements 

come from lepton + jets

Use of W ���� jets calibration is an 

important improvement

http://tevewwg.fnal.gov
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How does top decay?How does top decay?

• In the SM, top decays almost 

exclusively to a W and a 

b-quark, but in principle it could 

decay to other down-type quarks 

too

• Can test by measuring 

R = B(t →→→→ b)/B(t →→→→ q)

• Compare number of double 

b-tagged to single b-tagged 

events 

All consistent with R = 1 (SM)

i.e. 100% top →→→→ b CL (Bayes) 95% @ 61.0

)(03.1 19.0

17.0

>

+= +
−

R

syststatR

DØ Run II Preliminary

Lepton+jets (~230 pb-1)

Lepton+jets and dilepton (~160 pb-1)
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>
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R

syststatRPRL 95 102002

hep-ex/0603002
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Top Top →→→→→→→→ charged Higgscharged Higgs

• If MH±±±± <mt −−−− mb then t →→→→ H+b competes 

with t →→→→ W+b

• Sizeable B(t→→→→ H+b) expected at

– low tanββββ: 
H±±±±→→→→cs, Wbb dominate

– high tanββββ : H±±±±→→→→ τντντντν dominates

• different effect on cross section 

measurements in various channels. 

• CDF used σσσσtt measurements in 
dileptons, lepton+jets and lepton+tau

channels

• allowed for losses to t→→→→ H+b decays

• Simultaneous fit to all channels 

assuming same σσσσtt

But still room for substantial 

B(t →→→→ H+b) – as high as 50%?

PRL 96, 042003
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Top chargeTop charge

• Using 21 double-tagged events, find 17 with convergent kinematic fit

• Apply jet-charge algorithm to the b-tagged jets

– Expect b (q = −−−−1/3) to fragment to a jet with leading negative hadrons, 

butb (q = +1/3) to fragment to leading positive hadrons

– Jet charge is a pT weighted sum of track charges

– Allows to separate hypothesis of top →→→→ W+b from Q →→→→ W-b

• Data are consistent with q = ±2/3 

and exclude q = ±4/3 (94%CL) 
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*θcos
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Spin in Top decaysSpin in Top decays

• Because its mass is so large, the 

top quark is expected to decay 

very rapidly (~ yoctoseconds) 

• No time to form a top meson

• Top →→→→ Wb decay then preserves 
the spin information

– reflected in decay angle and 

momentum of lepton in the W 

rest frame

• We find the fraction of RH W’s 

to be (95% CL)

F+ = 0.08±0.08±0.05 (DØ) 
< 0.09 (CDF) 

CDF finds the fraction of 

longitudinal W’s to be

F0 = 0.74 +0.22 –0.34 

(lepton pT and cos θθθθ* combined)

In the SM, F+ ≈≈≈≈ 0 and F0 ~ 0.7

All consistent with the SM

L=230 pb-1

PRD 72, 011104 (2005)

Left-handed

Right-handed

Longitudinal

cos θθθθ*
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Blind AnalysisBlind Analysis

• Optimize cuts on side bands in mass

• Open box – is there a signal?

– In fact find no events

– Set limits

– Constrain SUSY models

Mass of muon pairs

• Example: 

the rare decay of Bs and Bd →→→→ µµµµ++++µµµµ−−−−

• In the Standard Model, 

cancellations lead to a very small 

decay probability

– 3 ×××× 10-9 and 10-10

• New particles (e.g. SUSY)  

contribute additional ways for this 

to happen, increase probability

– up to 10-6

“blind analysis”: hide the signal region
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A few words on Systematic ErrorsA few words on Systematic Errors

• Estimating systematic errors is not an exact science

• Need to be honest – not over conservative, not over aggressive

– Sometimes there’s a tendency to overestimate errrors to “cover our 

butts” for things we forgot

– Remember, theorists are liable to add your systematic error in 

quadrature with the statistics, input it into a χχχχ2 fit and expect χχχχ2/DF ~1

• assumes ±1σσσσsys is a 68% confidence interval

– While we often tend to think of the systematic error as more like a 95% 

(or 100%) interval

• e.g. “How far off could we be?”

• Need to be clear what we did and how we estimated the numbers we quote
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Example: top massExample: top mass

CDF note 8375

• Be prepared for a significant amount of work!

Each line in this table is essentially a re-analysis of the top mass

Possible Variation with ET or η
(change by ±1σ)

How different from light quarks?

PYTHIA vs. HERWIG

Vary parameters in generator

Change by ±1σ in estimated efficiency

Change backgrounds by estimated 
undertainties and vary model of W+jets

Divide sample

Shift lepton pT by ±1% 

Room for MC not to model properly



John Womersley

ConclusionsConclusions

• The only way to learn physics analysis is by doing it.

• To your great good fortune, you (as students and postdocs) have the 

opportunity to carry out cutting edge analysis at forefront facilities – as a 

routine part of your careers.

– Seize this opportunity and enjoy it!   
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Questions, commentsQuestions, comments……


